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Using a Markov rate-process model, exact expressions are found for the steady 
growth rate of an edge of a two-dimensional crystal in terms of the number M 
of particles along the edge, the height difference (or number of permanent steps) 
K along the edge, the nucleation rate a, and the speed ~ +  v of movement of 
steps. The familiar growth regimes can be identified with asymptotic regimes for 
the parameters K, (v/a) ~/2, and M. From a mathematical viewpoint, there are 
seven basic regimes, of which the known physical regimes are special cases. 

KEY WORDS: Crystal growth regimes; asymptotics; polymer crystallization; 
nucleation; dislocation; Markov process. 

1. I N T R O D U C T I O N  

Mathematical aspects of the growth of two-dimensional crystals, at the 
molecular level, have been studied by several authors. 117'6'1'12"7-111 This 
work describes a two-dimensional polymer crystal or a two-dimensional 
layer on the surface of a three-dimensional crystal or substrate. 

Growth regimes are usually described in terms of the model in ref. 6. 
This represents a crystal edge by a series of one-dimensional layers of unit 
height in the manner of Fig. 1. Layers are built upon a flat substrate of 
length L by a process of nucleation of new layers and extension of existing 
layers. A nucleation is an attachment of a particle to a fiat layer or an 
attachment of a new polymer chain. Nucleations are represented by spikes 
of unit height and are taken to occur independently and uniformly along 
the edge. They arrive in time as a Poisson process of rate i per unit length. 
Subsequently, the spikes expand horizontally with speed g in both direc- 
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Fig. 1. A crystal edge in a model where steps move with constant horitontal speed g. 

tions as new particles or further segments of a polymer chain attach. The 
growth rate G is the total rate of increase of the area under the edge per 
unit length. 

For a level edge, the steady growth rate takes different forms, depend- 
ing on ambient conditions: 

regime I: G = Li  ( 1. l ) 

regime II: G = (2ig) I/2 (1.2) 

regime III: G = L i / M  (1.3) 

Here M represents the number of particles on the substrate. Polymer 
scientists have devoted much effort to understanding why such rates are 
observed and the rather abrupt transitions between regimes that occur as 
ambient conditions change (see refs. 14, 15, and 18 for reviews). For an 
inclined edge, with a height difference K between the ends of the substrate, 
one encounters the formula 

G = g K / L  (1.4) 

which we calI regime IV. 
These different regimes have never been derived from a single mathe- 

matical model, and that is our purpose here. This enables us to understand 
the precise mathematical conditions under which various regimes apply 
and also to elucidate intermediate regimes that connect them. Thus we are 
able to provide a unification of several partial theories of two-dimensional 
growth. These include the theory of Bennett et al. ~'~ and Goldenfeld, (t21 
which gave a more exact version of Frank's theory ~6~ and yielded regimes 
I and II; our theory, ts~ which unified regimes I, II, and Ill  (called I, IIa, 
and l ib in ref. 8); and Frank's classical theory ~5~ of growth driven by dis- 
locations (regime IV), 

In the context of Frank's model, c6~ regime I is appropriate when 

L ~ (g / i )  I/2 (1.5) 
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i.e., the time L/g for a step to traverse the edge is much less than the mean 
time l/(Li) between nucleations. Then there are typically very few steps on 
the edge. 

Regime III is appropriate when 

(g/i) t/2 ~ L/M (1.6) 

i.e., looking at one particle site on the edge, the time M/(Li) between 
nucleations at the site is much less than the time L/(Mg) for a step to 
advance one particle distance. In this case there are steps at nearly every 
site, so the edge is very rough. The growth is dominated by nucleation, as 
(1.3) suggests. 

Regime II is appropriate when 

L/M ~ ( g/i) ~/2 ~ L (1.7) 

Then there are typically many steps along the edge, but the distance 
between steps is large. 

The formula (1.4) is appropriate at least when K >  0 and (1.5) holds. 
Then the edge typically has exactly K upward steps and no downward 
steps, leading easily to (1.4). When K ~ M ,  as is usually the case, this 
regime describes an edge inclined at a small angle arctan(K/M) to the 
principal crystal direction. Alternatively it represents a two-dimensional 
analog of a crystal surface with K screw dislocations, in that the net number 
of steps is preserved as growth occurs, though their locations can change. 
When (1.4) applies they dominate the growth process. This phenomenon 
was postulated long ago by Frank 15~ in order to explain why crystals grow 
much faster than theories based on perfect crystal growth predicted. Now 
we can give a detailed mathematical description of this phenomenon in two 
dimensions. 

2. THE M O D E L  A N D  THE G E N E R A L  G R O W T H  RATE 

Polymers such as poly(4-methylpentene-1) form lamellar crystals in 
which chain segments pack together in a square arrayJ ~6~ Looking at the 
face of such a lamella and viewing a portion of the edge, one sees a stack- 
like array in which the ends of polymers, which we may represent by 
squares, form vertical columns as illustrated in Fig. 2a (the so-called solid- 
on-solid, or SOS, model). We invoke periodic boundary conditions. Thus 
Fig. 2a may be.regarded as wrapped around a vertical cylinder so that 
points A and A' coincide. This implies a K-fold helical structure. As one 
adds to this structure, the net upward step around one revolution remains 
fixed at K. 

822/77/1-2-15 
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Fig. 2. (a) A crystal edge in the discrete particle Markov model. The pattern continues peri- 

odically across, and points A and A' are equivalent. (b) The transitions and their rates. 

We are mainly concerned with large M, where the helical structure is 
unimportant .  For  small M, however,  the grown crystal in our model resem- 
bles a helical macromolecule.  The analogy between the growth of such 
molecules and the growth of crystals driven by permanent  steps was 
recognized by Watson (ref. 19, p. l l4) .  

In ref. 7 we also treated crystals with hexagonal  structure. Here we 
confine ouselves to square structure. 

Consecutive columns are labeled 1, 2 ..... M and the stack may be 
represented by the vector of  occupat ion numbers  (n,,..., riM) or heights of  
columns, or alternatively by the vector of  height differences or step sizes 
h = (ht ..... hM), where hj=nj-nj_ 1, where 

M 

h,=K (2.1) 
i = l  

Transit ions consist of adding one chain segment (or square) to one 
column, i.e., 

hj--*hj+l, hi+,  ~ h j + ~ -  1 (2.2) 

for exactly one j. This transition has rate (see Fig. 2b) 

cx if h i />0 and hj+]~<0 

fl=cx+v if hj>~O and h j + l > O  , or hj<O and h j+ l~O (2.3) 

y = c t + 2 v  if h j < O  and h j+~>O 



Basic Regimes of Steady Crystal Growth in 2D 203 

with a, v > 0. The three rates correspond to nucleation, to extension of an 
existing layer, and to joining two portions of a layer, respectively. This is 
discussed further in ref. 7. 

We suppose that the growth is a Markov process in continuous time 
whose states h satisfy (2.1) and whose transition structure is governed by 
(2.2) and (2.3). The state space is countably infinite. 

A situation of steady crystal growth corresponds to stationarity of the 
Markov process. By a slight extension of the argument given in ref. 7 to 
K >  0, the stationary probabili ty distribution is 

p ( h ) = Z - ~  e x p ( - 2 J  ~ [h;[) (2.4) 
i = 1  

subject to (2.1), where 

J =  �88 log(y/a) (2.5) 

and Z is the normalizing constant. A convenient base state for the deriva- 
tion of (2.4) is h = (K, 0 ..... 0) rather than the h = 0 used in ref. 7. We note 
that Z is the coefficient of z K in the Laurent  series 

zZ h,~bZ rh,I = (1 -- ~b2)g(1 -- ~Z) --g( 1 -- Ok~Z)--g (2.6) 
h 

where 

ck - (oc/y) j/2 < 1 (2.7) 

Laurent 's  integral formula then gives 

a~ z - K -  ]( 1 - (bz) - M (  1 -- d?/z) - M (2.8) 
27ri C 

where the closed curve C is confined within the circular annulus 

~b < Iz[ < lab (2.9) 

We see from (2.3) that the total rate out of state h is 

q(h) = M0c + vs(h) (2.10) 

where s(h) is the number of h~:~0, i.e., the number  of steps in the edge. 
Then the steady, growth rate (area per unit length, or particles per site, per 
unit time) is 

G = ( q ( h ) ) / M  

= o t + v  Pr(hl :~0) (2.11) 
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where the expectation ( . )  and the probability are with respect to the dis- 
tribution (2.4). One easily finds (8~ 

G = ct + v[ 1 - Z ( M -  1 ) / Z ( M ) ]  (2.12) 

Together with (2.8), this provides an explicit expression for G in terms of 
M, K, ~, and v. Note  that we may write 

G=o~F(K,  S, M )  (2.13) 

where 

S -  (v/=) 'a  = {(1 - ~2)/2~b2} ;/2 (2.14) 

which turns out to be a measure of  the distance between steps (see 
Theorem 2 et seq. ). 

Figure 3 shows the dimensionless growth rate F =  G/o~ plotted against 
J of  Eq. (2.5) for the values K = 0 ,  1, 5, 15, and 50 and for M = 5 0 .  The 
curves were computed using the finite sum expression (4.2) for Z in (2.12). 
The regimes I, II, III ,  and IV are indicated. The large difference between 
K =  0 and K >  0, for v/~ not too small shows the major  influence of  per- 
manent steps on a moderately smooth edge. The K = 0  curve may be 
compared with Fig. 4 of  Hoffman. (~sl 
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Fig. 3. Plot of the dimensionless growth rate F= G/ct against J=  �88 Iog(7/ct) for M= 50 and 
K=O, l, 5, 15, and 50. The familiar regimes I-IV are indicated. 



Basic Regimes of Steady Crystal Growth in 2D 

Table I. Summary of Regimes when K > 0  
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K , S , M  

KS/M 

KS/M --* c 

KS/M --* 

~S - ,  0: Theorem 3 
4 0  ( S > S . > 0 :  Theorem 2 

"S-* 0: Theorem 3 

f S  fixed: Theorem 4 

S> So>O ~ S ~  ~ (K/M-* O) 

S --. 0: Theorem 3 

S > So > 0: Theorem 1 

M--* c~, K fixed: Theorem 4 

K, M--* oo: Theorem 6 

We shall also look at the proportion of sites that have steps 

( ( K , S , M ) = ( s ( h ) ) / M = I - Z ( K , S , M - 1 ) / Z ( K , S , M )  (2.15) 

This provides a simple descriptor of edge roughness that distinguishes 
among different regimes. 

As shown in ref. 8, the discrete SOS model relates to the continuum 
model of Section 1 as M ~ ~ ,  with the identifications 

Mo~---, Li and v/M ~ g/L (2.16) 

Our model involves captures of particles or polymer chain segments 
by the edge, but not escapes. When crystal growth is slow, escapes become 
important, and can be incorporated in the model quite easily. (~l~ The 
resulting growth rates have a simple multiplying factor, and this does not 
influence the asymptotic regimes. 

The rest of the paper is devoted to a study of various asymptotic 
regimes defined in terms of the distance parameters K, S, M. The formulas 
(1.1)-(1.4) are such regimes. The continuum model of Section 1 is itself 
such a regime. The complete set of regimes is summarized in Table I 
( K > 0 )  and Table II (K=0) .  

Table II. Summary of Regimes when K = 0  

/" ~'S ~ 0: Theorem 3 
S/M ~O 

�9 ) ~ S > S o > O , M  oo: Corol larytoTheorem2 

O, S, M ] S/M --* c ( S, M--* Go): Theorem 5 
! 

~ S/M--* ~ :  Theorem 7 
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Section 3 lists the asymptotic formulas, embodied in Theorems 1-7, 
and outlines their physical meaning. Section 4 gives various representations 
of Z(K, S, M) which are used to prove the theorems. The proofs are in 
Section 5. 

3. A S Y M P T O T I C  F O R M U L A S  A N D  THEIR PHYSICAL  
I N T E R P R E T A T I O N  

Theorem 1. If K S / M  ~ c~ and S>I So > 0, then 

~(K, S, M) ~ K/(M+ K -  1) (3.1) 

This means that the edge has only those steps forced by the height dif- 
ference K >  0;. there are no further steps due to nucleations (~ transitions). 
Here we have a two-dimensional analog of crystal growth driven by screw 
dislocations. An obvious formula for G follows from (2.12), and for M>> K 
it reduces to G~vK/M.  The identification (2.16) shows this to be 
regime IV. 

One can also treat this regime as a separate model with ~ = 0. It has 
statespace with hi~> 0 for all i and with (2.1). The stationary distribution is 
uniform on this state space, i.e., 

p(h) = Z  - l ,  

which yields (3.1) as an equality. 

Theorem 2. I f K S / M ~ O  a n d K > 0 ,  S>_-So>0, then 

~(K, S, M) ~ 2~b/(1 +~b) (3.3) 

Corollary. Result (3.3) holds i l K = 0 ,  S/M--,O, and S~>So>0.  

These results describe the regime opposite to Theorem 1, in which the 
growth and edge structure are dominated by random captures. Using 
(2.12) gives the simple formula G~ (~7) l/z. This reduces to G ~  (2~v) 1/2 as 
S--+ oc and to G ~ ~ as S ~  0. Further terms in an asymptotic expansion 
are given in ref. 8. With the identification (2.16), we see that we have 
obtained regimes II and III. 

Theorem 3. I fS--+0,  then ~(K, S, M)--+ 1. 

This is more extreme than Theorem 2; now the steps on the edge have 
no influence on the arrival of particles. Thus the stacks grow independently 
and there is a step at every site. In fact, the Markov process is transient in 
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this case, (71 so steps grow in height without limit. Again G~0~, implying 
regime III.  

Theorems 4-6 deal with the intermediate case K S / M ~  c, where 
0 < c < oo. Theorem 2 shows that S is a measure of the mean distance 
between steps, while M/K is a distance measure for the permanent  steps. 
Thus the breakdown into cases (Table I), dictated by the asymptot ic  
formulas, parallels the breakdown into physically different cases: 

(i) M/K~ S, where the permanent  steps dominate  growth behavior. 

(ii) S ~  M/K, where the r andom steps dominate.  

(iii) S ~  M/K, where both have comparab le  influence. 

Case (iii) is more  complex and interesting, and several subcases arise. 

T h e o r e m  4. If S is a fixed positive number ,  M, K ~  oo and 
M/K- .  D, where 0 < D < oo, then 

1 D 2~ 
((K, S, M ) ~  D +  1 + D  +---~ 1 _ ~----~ ( 1 - ~ b - s  2) (3.4) 

where s 2 is the smaller root of  

t l (D-  1)s4--(2+tlD)s2+ l = 0  (3.5) 

with q -- 4~b/( 1 - ~b) 2. 

This provides a useful general formula for a long edge, and contains 
several of  the physically observed rates as special cases. (71 For  example,  
S -~  oo (~--* 0) gives ( ~  1/(l + D ) ,  which is nearly (3.1); and D ~  oo gives 
So--+ l, leading to (3.3) (note, however,  that Theorems 1 and 2 do not 
require a part icular  limit sequence, and so are more general). 

T h e o r e m  5. If K is a (fixed) nonnegative integer and M / S ~  x/x/~, 
where 0 < x < oo, then 

((K, S, M) ,,, (x/M) I'r(X)/IK(X) (3.6) 

where IK is the modified Bessel function. 

This regime is equivalent to the cont inuum model of  Section 1. (v'8~ The 
model was analyzed in its own right by Bennett et al. (~1 They obtained 
(3.6) in the c a s e - K = 0 .  

Theorems 4 and 5 suggest the complementary  limit: fix M and let 
KS ~ c. Since K ~ 0 is meaningless, this leaves only K ~ oo, S -~ 0, which 
is covered by Theorem 3. 
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Theorem 6. If K, S, and M all tend to ~ and KS~M--+ x, then 

((K, S, M ) ~  S -  l ( x 2  --~ - 1) '/2 (3.7) 

I f x  is large, this agrees with (3.1); i fx  is small, it agrees with (3.3). Thus 
Theorem 6 interpolates in an obvious way between Theorems 1 and 2. 

T h e o r e m  7. I f  K =  0 and S/M--* ~ ,  then 

~(K, S, M) ~ (M - 1 )/S 2 (3.8) 

This result occupies a slightly special place. From (2.12), G~Mct, 
meaning that an entire layer is added for each nucleation. The identifica- 
tion (2.16) shows this to be regime I. If there were permanent  steps ( K >  0) 
these would drive the growth, as in Theorem 1. Thus there is a sharp 
dichotomy between K = 0 and K = 1. 

The theorems exhaust all the asymptotic formulae for ~ under limiting 
regimes where parameters or their products or ratios vary monotonically; 
that is, all the physically sensible regimes. Thus there are only seven 
different formulas. Tables I and II provide their mathematically natural 
classification. The physically observed regimes are largely special cases of 
these. 

4. R E P R E S E N T A T I O N S  OF THE BASIC F U N C T I O N S  

If we choose C in (2.8) to be the unit circle centered at z = 0, then sub- 
stituting z = e i' produces 

Z(K ,S ,M)=(1 -c~2)Ml  f :  cos Kt 
dt (1 -2~b cos t + ~ 2 )  M (4.1) 

M - I  =~bX Z ~ ( M + K - I ' ] ( M + j - I ' ~ {  q~2 y 
.= \ j + K  J \  j ,1\1-4o2,1 

(4.2) 

[see ref. 13, Eq.(3.616.7)].  It follows from (4.1) that Z(K ,S ,M)  is also 
proport ional  to the hypergeometric function F(M, M+K,  K + I ;  ~b 2) 
[ ref. 13, Eq. (9.11.2) ] and to the Legendre function P x _  ~ { ( 1 + ~b 2)/( 1 - ~b 2) } 
if K~< M - 1  [ref. 13, Eq. (8.711.2)]. There are many other possible repre- 
sentations, such as the infinite series for F, but we shall not need these. 

The Legendre function leads to a key formula. F rom ref. 3, w 
Examples 2 and 3, it follows easily that, if K ~< M -  1, then 
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Z(K, S, M ) =  ~br(1 -~b2) M - -  
22rK! (M + K -  1)! 

(2K)! (M--  1)! 

1 r" Sin 2r t 
x -  Jo dt (4.3) ~z (1 - 2 ~  cos t +~b2) M+h" 

_ ~K (1 + ~b'~M 2"-rX! (M+K-1) !  
(1 --~b)2K \1 -- q~] (2K)! (M---  ~ .  I 

2 r hI2 sin 2K 2u 
x - | du (4.4) 

r~o {1 +4~b sinE u / ( l -  ~b)2} M + K  

The second expression comes from using cos t = 1 - 2  sin2(t/2) and setting 
u = t/2. Although this argument requires K~< M - 1 ,  we have in fact the 
following result. 

L e m m a .  Equations (4.3) and (4.4) hold for all K = 0 ,  1,2 .... and 
M = l , 2  .... and 0~<~< 1. 

This can be proved directly using Jacobi's lemma (see ref. 3, w167 
and 11.62). The value of (4.3) and (4.4) lies in the fact they contain non- 
negative integrands with K always occurring as a power. It follows directly 
from (2.15) and (4.4) that 

K M -  1 2~b 
( ( K , S , M ) = M + K _ I + M + K _  1 1 _~b2 (! - ~ b - 2 R )  (4.5) 

where 

_ f hi2 I t' hi2 
R - ~ o  du sin-" u W(u)/J ~ du W(u) (4.6) 

and 

/{ W(u)=(s in2u)  2K 1-~ ( l ~ b )  sin2u (4.7) 

Thus 0 ~< R ~< 1.-This shows that the asymptotic behavior of ( depends on 
the relative magnitudes of the two terms in (4.5), which effectively means 
the relative magnitudes of K/M and r = O(S-  ~); hence the separation in 
Table I into cases distinguished by magnitudes of KS/M. 



210 Gates and Westcott 

5. PROOFS OF T H E O R E M S  

Proof of  Theorem 1. From (4.5)-(4.7), using 0 ~< R ~< 1, we find that 

M + K - - 1  K(1-~b)J  + K - 1  

Since KS/M-- ,oo  is equivalent to MO/K--*O, and since (1-q~) - l  is 
bounded through the condition on S, the theorem follows. The inequality 
(5.1) provides a more complete statement than the theorem. 

Proof of  Theorem 2. The second term in (4.5) is dominant under the 
conditions of the theorem. Hence we require the asymptotic behavior of R 
in this limit, which is equivalent to Mck/K ~ oo. The method is similar to 
the Laplace approximation (see ref. 4, Chapter 5). Throughout the proof, 
Ct, C2 .... are positive constants independent of M, K, or ~b. For any fixed 
6 > 0, write 

fOn/2 f~ rt/2 f du W(u)= du W(u) + J,~ du W(u) 

= I t  +12, say (5.2) 

In 12, use {4~b/(1-tb) 2} sin s u>~4~b sin z f, to get 

0 ~< 12 ~< exp{ - (M + K) log( 1 + 4~ sin 2 fi)} 

~< exp{ - C, sin z 6 (m  + K)~b} (5.3) 

In It,  use( t /6)s in6~<sint~<t  (0~<t~<6) ande'> / l+t  (t>10) toget 

6 

I t >/ (6- t  sin 26) 2K Ii du u 2r exp{ - C2(M q- K) ~bu 2 } (5,4) 

Here we are using the condition on S to ensure that (1-~b) -2 remains 
bounded. Define co = C2(M + K) ~/K; clearly co ~ ~ .  Then 

~2toK 1 --I -K--I/2~ oK-l/2e--r I t/> ~(& sin 26)2K(coK) dv 
o 0 

(5.5) 

Now use the inequality 

dx f(x)>~ dx f ( x ) -  dx xf(x)  (5.6) 
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for f~> 0, which is in effect Markov's inequality (ref. 2, p. 85), to deduce 

I,/> �89 -1 sin 26)2K(OgK)-'K+I/2~F(K+ 1/2){ 1 -- (K+  1/2)/(o9K)} 

>/C3(6-1 sin 26)2K(ogK) -IK+ I/2)F(K+ 1/2) (5.7) 

since o9--* ~ .  From (5.3) and (5.7), with Stirling's formula for F(K+ 1/2), 
we get 

O<,.I2/Ii <.~. C4(ogK)'/2{ogexp(-Cso9sin2 6)6e/sin26} K (5.8) 

So I-fli t ---~0 as to--+ ~ ,  for any 6>0 .  Hence, from (4.6), 

0 ~ R <. (6211 + 12)/(11 + 12) 

= ( 6 2  + 12/I 1 )/( 1 + I 2 / I  , } 

62 --* as o9 ~ ~ ( 5 . 9 )  

But 6 is arbitrary, so R ~ 0  as co--, ~ ,  i.e., as KS/M--* oo. Rewrite (4.5) as 

2~b M ( 2R +(1 +~b)K'] 
( ( K , S , M )  I + ~ b M + K - 1  1 -1 - - -~  ~ ,] (5.10) 

The condition on S implies K/M--,O and (1-~b) -I is bounded, and the 
theorem follows from R--* 0. The corollary follows by minor modifications 
of the argument from (5.4) et seq. 

Proof of  Theorem 3. Use (4.2) with (2.14) to get 

g - - I  

Z(K'S ,M)=q~K(2S2)-M+I E b~ (K,M)(2S2)~ (5.11) 
i = O  

where 

(5.12) 

It is easy to show that b~(K, M -  1 )/bi(K, M)  is a decreasing function of i, 
O<~i<~M-2, so 

M - 1  
b~(K, M -  1 )/b~(K, M) <~ 2 ( 2 M -  3) (5.13) 
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for such i and for all K and M. Then from (5.11 ), 

O <. Z(K,  S, M -  I ) /Z(K, S, M )  

M -- 2 1 M -  1 / z  = 2 S  2 ~ bi(K, M -  1)(2S2) i 
i = 0  t i = O  

bi(K, M)(2S2) i 

M - 1  
<~ 2S z (5.14) 

2 ( 2 M -  3) 

by (5.13). Hence, for all K, S, M, 

M - 1  
1 - - S ' - < < .  < ( ( K , S , M ) < ~ I  (5.15) 

2 M -  3 

and the theorem follows easily. 

Proof  o f  Theorem 4. Here it is necessary to finds the limit of  R. To  this 
end, define DK = M / K  and write 

W(u) = { sin 2 2u/( 1 + q sin z u) I + ox} K 

= { V(u, DK)} K, say (5.16) 

It is easy to show that V(u, DK) has its m a x i m u m  at the value of  u 
determined by the smaller solution of (3.5), with D replaced by DK and 
s = sin u. Call this solution s~, K = sin 2 Uo, x. 

We wish to use Laplace's  method on both integrals in R, al though 
neither is, at first glance, in exactly the usual form for such an application; 
in particular,  f rom (5.16) the max imum of the integrand depends on K. 
But clearly So.x--,s 2 as K ~  ~ ,  while V(u, DK), sinZu, and their higher 
derivatives are cont inuous bounded functions of  u. It is then not hard to 
see from the proof  of  the Laplace approximat ion in ref. 4, w that essen- 
tially the same method proves that 

o "/z du W(u) ~ A K - u z {  V(uo.r ' Dx)} K 

fo /2 du sin z u W(u) ~ AK-~/Zs~{ V(uo.x, DK)} K 

(5.17) 

where A is a constant  independent of  K. Therefore,  from (4.6), 

R --. s~ (5.18) 

and the theorem follows from (4.5). 
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Note that it is not  possible to say whether ~g/2du W(u )~  
AK-' /2{ V(uo, K)} K, where So=sin  u o, without some assumptions on the 
rate at which M/K approaches D. Fortunately, this extra result is not 
needed. 

Proof o f  Theorem 5. The limit M/S--*x/~/2 is equivalent to 
Mqb--* x/2, by (2.14). In this limit, it is clear from (4.7) that W(u) remains 
bounded and W(u)--*(s in2u)ZKexp(-2xs in2u) .  So we can apply 
dominated convergence to both integrals in (4.6) and deduce that 

R --, du sin 2 u (sin 2u) 2x exp( - 2 x  sin'- u) 
~0 

E;? ]-' x du ( sin 2u) 2K exp( - 2x sin 2 u) 

[;: ] = dt ( 1 - cos t) sin 2K t exp(x cos t) 

x dt sin 2K t exp(x cos t) (5.19) 

SO 

1 - 2R ---, { I~:(x) - (K/x) IK(X)}/IK(x) (5.20) 

where we have used the integral representation [ref. 13, Eq. (8.431.3)] 

IK(X) = { F (K+ 1/2) x/n} - ' ( x /2 )  x f [  dt sin 2K t exp(x cos t) (5.21) 

But from (4.5), 

M~(K, S, M) --* K + x lim( 1 - 2R) (5.22) 

and the theorem follows from (5.20) and (5.22). 
Note that only the case K >  0 is compatible with a positive limit for 

KS/M, but we give the more general result for completeness, since no extra 
effort is required. 

Proof o f  Theorem 6. We use the notat ion of  the proof  of  Theorem 4. 
Then S / D K ~ x  ~ind hence qDx---,23/2x-n =~,  say. In this limit, the solu- 
tion s 2 which determines the maximum of V(u, Dr) ,  converges to 0, K~ 

ao 2 = {2 + ~ - ( 4  + ~:")'/"}/(2~) (5.23) 
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Just as in the proof of Theorem 4, we can show that 

R ~ a ~  (5.24) 

Therefore, from (4.5), 

S~(K,  S, M )  --, x + x/2(1 - 2ao 2) (5.25) 

and the theorem follows by simple algebra from (5.23) and (5.25). 

P r o o f  o f  T h e o r e m  7. We see that S / M  ~ oc is equivalent to M~ --, 0, 
which implies that r  (excluding M ~ 0  as trivial). So it is valid to 
expand W(u) in the binomial series and integrate term by term as required. 
This easily leads to 

2 R  = 1 - 3 M r  + o( M r  ) 
(5.26) 

1 - 2 M r  + o ( M r  

SO 

I - r - 2R  = ( M -  1 )r  + o ( M r  (5.27) 

Then, from (4.5), 

M) = 1 2 ~ 2  ( M -  1) r +o(1)} ~(0, S, 

= ( M -  1 )/S-'{ 1 + o(1)} (5.28) 

and the theorem is proved. 
Note that it is possible to set up inequalities for ( in the manner of 

(5.1), but the details are protracted and unnecessary for our current 
purpose. 
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